Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We develop a Stockmayer fluid model for molecular dynamics simulations of ionic liquids that captures molecular polarization, ionic conductivity, viscosity, and glass transition temperature, using ethylammonium nitrate (EAN) as an example. The ions in EAN are treated as spheres interacting via the Lennard-Jones potential with an embedded point charge and a permanent dipole moment. We show that our simulation results for EAN are consistent with experimental data and then explore the effects of the molecular parameters on the viscosity of ionic liquids. Our results indicate that viscosity monotonically increases with ionic charge and dipole moment but non-monotonically changes with ionic diameter (or molar volume). This non-monotonic trend arises from the competition among the electrostatic interactions, molecular packing, and size asymmetry between the cation and anion. Our model also shows that long-lived ion pairs result in higher viscosities.more » « lessFree, publicly-accessible full text available July 28, 2026
-
We develop a Stockmayer fluid model that accounts for the dielectric responses of polar solvents (water, MeOH, EtOH, acetone, 1-propanol, DMSO, and DMF) and NaCl solutions. These solvent molecules are represented by Lennard-Jones (LJ) spheres with permanent dipole moments and the ions by charged LJ spheres. The simulated dielectric constants of these liquids are comparable to experimental values, including the substantial decrease in the dielectric constant of water upon the addition of NaCl. Moreover, the simulations predict an increase in the dielectric constant when considering the influence of ion translations in addition to the orientation of permanent dipoles.more » « less
An official website of the United States government
